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Abstract. The model studied consists of a two-dimensional triangular lattice of which some
sites are occupied by the centres of molecules, the remainder being unoccupied. Each
molecule has three bonding directions at angles of 120° to each other and two possible
orientations, in each of which its bonding directions point to three of the six nearest-
neighbour sites. If the molecules of a nearest-neighbour pair have bonding directions
pointing towards each other a bond is formed; bonded and unbonded pairs have different
interaction energies.

The lattice is wrapped around a semi—infinite cylinder terminating in a row of boundary
sites. This allows an exact matrix calculation to be performed. Maxima of the isothermal
compressibility are located and it is shown that these maxima become steeper as the width of
the lattice increases. The ‘phase diagram’ of these maxima is compared with the correspond-
ing phase diagram obtained from the author’s first-order calculations. The probabilities for
different types of occupation of the boundary sites are determined by the interaction with
the environment and the successive occupations of the sites of the lattice, proceeding in a
direction away from the boundary, are given by a stationary Markov chain. It is shown by
computer calculations that the local molecular number density and the probability of site
occupation by a monomer both fluctuate in a damped periodic way.

1. Introduction

Since the work of Bernal and Fowler (1933) it has been widely recognized that many of
the ‘anomalous’ properties of water arise from the existence of regions of open structure
with a lower density than other molecular arrangements (see, e.g., Eisenberg and
Kauzmann 1969, Fletcher 1970, Perram and Levine 1974). This point of view has
recently been embodied in one-dimensional (Bell 1969, Bell and Salt 1973), two-
dimensional (Bell and Lavis 1970a,b, Lavis 1973, 1975) and three-dimensional
(Perram 1971, Bell 1972, Bell and Sallouta 1975, Bell and Salt 1976) lattice theories.
This work supports the contention that the competition between molecular order of
open and close-packed forms leads to water-like behaviour.

In the two papers of Bell and Lavis (1970a, b) a two-dimensional triangular lattice
model was considered in which the molecules form bonds in such a way that an open
honeycomb structure with vacant sites is necessary for all molecules to be fully bonded.
The model of Bell and Lavis (1970a) is of the interstitial type. The low temperature
open honeycomb configuration is ensured by an initial choice of a honeycomb array and
molecules are allowed to bond only when they occupy neighbouring sites on this array.
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2078 D A Lavis

In this model the liquid state corresponds to a form of long-range ordering between the
honeycomb array and the remaining interstitial sites. Since order in the liquid state is
generally regarded as short-range in character this approach is not very satisfactory. In
the second paper (Bell and Lavis 1970b) a model was developed for the liquid and
vapour states in which the open structure is a form of short-range ordering. Using a
first-order approximation based on a triangle of sites, one phase transition of the
steam-water type was obtained, together with the characteristic density maximum
found in water. Lavis (1975) investigated the symmetry properties of this model and,
using these properties, obtained a simple equation for the coexistence curve. This
allowed a detailed examination of the thermodynamic response functions along this
curve. Water-like behaviour is again observed. The extension of this model to include
a long-range ordered phase is given by Lavis (1973). The long-range ordered phase can
be identified as a solid phase which occurs by a transition of the water-ice type from the
liquid phase.

In the present work we study the model of Bell and Lavis (1970b) and Lavis (1973,
1975) but, instead of choosing a two-dimensionally infinite assembly, we consider a
lattice in the form of 2n rows, each of N sites, wrapped around a cylinder. The form of
the lattice is shown in figure 1, the first and (2n + 1)th rows being coincident on the
surface of a cylinder. In order to be able to include a study of boundary effects, the
thermodynamic limit is taken by projecting one end of the cylinder to infinity. Models of
this kind have been studied extensively, using the matrix method, for assemblies of hard
molecules (see, e.g., Ree and Chesnut 1966, Runnels and Combs 1966, Runnels ez al
1967, Bellemans and Nigam 1967, Orban and Bellemans 1968, Orban et al 1968).

[/

NN
/S /NN

State +1 Bonded pair State -1

Figure 1. Orientational states of molecules and the left-hand end of the lattice. Elements of
the lattice are represented by a full line and a fragment of the honeycomb fully-bonded
structure is given by a bold full line.
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Although no phase transitions occur, maxima in the compressibility can be regarded as
‘incipient phase transitions’. This question is further discussed in § 4.

The main advantage of this method is that it is exact. It will therefore, in our case,
provide a comparison with the first-order approximation work of Bell and Lavis
(1970b) and Lavis (1973). A second advantage of this method is that it facilitates the
investigation of boundary effects. From a theoretical point of view a study of these
effects for two- or three-dimensional lattice models presents considerable difficulties.
(For a survey of work on surface effects in Ising models see Watson (1972).) It has
however been shown by the work of Bell and Salt (1973) that these properties can be
effectively considered, for a system with a low-energy open structure, if a suitable
one-dimensional model is chosen. In this context, a ‘one-dimensional model’ can be
understood to be any planar model which is only one-dimensionally infinite. Boundary
effects are of some importance for the water system. In particular it is interesting to
know, within the context of the model, if the disturbance due to the interface of water
with another medium has any long-range effects on the water structure. The experi-
mental work of Clifford et al (1970), using nuclear magnetic resonance measurements,
led to the conclusion that, for the surfaces examined, there were no long-range eflects.
This result is in agreement with the theoretical studies of Bell and Salt (1973). The
present work provides an additional investigation of these effects.

2. The lattice model

Each site of the lattice will either be occupied by a molecule or it will be vacant (be
occupied by a ‘hole’) and each molecule possesses three bonding directions at 120° to
each other. A molecule on a lattice site has two orientational states labelled ‘— 1’ and
‘41’ (see figure 1) in each of which it has bonding directions pointing towards three of
the six neighbouring sites. Since molecular bonding is intended, in this model, to
represent in a simple way the hydrogen bonding between water molecules, we allow a
bond to form between neighbouring molecules if and only if bonding directions from
each member of the pair point towards each other. The interaction energy of the pair is
in this case —(e+w) with € =0 and w>0. In all other cases of a pair of molecules
occupying neighbouring sites no bond can be formed and the interaction energy is —e.
Interaction energies between molecules which do not occupy neighbouring sites are
neglected.

The lattice can be regarded as composed of N ‘elements’, each element consisting of
2n sites forming a zig-zag ring of nearest neighbour sites around the cylinder on which
the lattice is situated (see figure 1). There will be 3>" ways of occupying the sites of an
element of the lattice. Labelling the state of an unoccupied site by ‘0’, we may represent
the occupational state of an element of the lattice by a vector B = (52, S2n—1, . - - » S1)T,
where s;,=—-1,0 or +1, for j=1,2,...,2n. The interaction energy E, within an
element of the lattice with occupational state 9 is given by

E,= =3 ), (S, €505 53-1) + S (W, €525, 53141)) (2.1)

J

1 Notation: throughout this work lower case Greek or Latin letters in bold italic will represent row vectors;
sans serif bold upper case letters will represent matrices. The superscript asterisk will indicate the Hermitian
adjoint of a matrix (or vector). The Hermitian adjoint of a matrix of real elements is its transpose; the
Hermitian adjoint of a row vector of real elements is the corresponding column vector.
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where the indices, in this and subsequent equations, are taken to be integers modulo 2n
and

d(w,e;x,y)=xy[wx+1)(y —1)+4exy]l=p(w, €; —y, —x). 2.2)

Suppose that the right-hand neighbour of this element has occupational state
&=(S%n, S2n-1, - - . , §1), then the interaction energy E,, between these two elements of
the lattice is given by

X

Enpe=—3 3 (¢(W, €;55-1,52)) + (W, €; 535, $3) + S (W, €; 55141, 52)
j=1

+3(w, €; $2j+1> $2j+1) +36(w, €; $2j-1, $3j-1))- (2.3)

Let the chemical potential of each molecule be u, then the chemical potential associated
with the occupational state » is

2n
Mq = ‘Zl [.LS_,?- 24
j=

We shall suppose that the system is in thermal and chemical equilibrium with its
environment and in mechanical isolation. The independent variables of the system are
the absolute temperature T, the molecular chemical potential u and the lattice volume
2nNA,, where A, is the (two-dimensional) lattice volume per site. The dependent
variables are the entropy S, the number of molecules M and the pressure P. (Supposing
that the boundaries of the lattice follow the zig-zag shape of the lattice elements and are
situated at half the nearest-neighbour distance to the left of the first element and to the
right of the Nth element (see figure 1), it follows that the triangle formed by three
nearest-neighbour sites has area Ay/2.) For thermodynamic stability the ther-
modynamic potential D is a minimum, where D is given by

D=U-ST-uM, 2.5)

where U is the internal energy of the system. Suppose that for fixed chemical potential
and lattice volume the temperature of the system is reduced to absolute zero. If the
system tends to the completely ordered honeycomb arrangement of molecules the
number of molecules tends to 4nN/3, each molecule being fully bonded to three of its
nearest neighbours. The molecular arrangement can be represented by the transposed
occupation vectors:

+1\ /-1 o\ [+1\ /-1
-1 o\ [+11 [ -1 0
+1 || -1 ol +1 1] =1
~1 ol +1 || -1 0
+1] | -1 of \+1/\ -1

-1 0 +1 -1 0
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For large N the interaction with the boundaries becomes negligible, the internal energy
tends to —2nN(e +w) and D tends to D'” given by

D@ = -2nN@e+3w+2u)/3. (2.6a)

The alternative to this arrangement is for all sites of the lattice to be occupied as the
temperature tends to absolute zero. In this case the minimum internal energy is
achieved with each molecule bonding on average with two neighbouring molecules.
There is a large number of different ways of achieving this state, e.g.:

+1 '+1 (+1 +1
-1 -1 -1 -1

-1 -1 -1 -1
+1 +1 +1 +1
-1 -1 -1 -1

] s

the degeneracy of the state being the same as that of the triangular Ising antiferromag-
net (see Bell and Lavis 1970b, appendix). In this case the internal energy tends to
—2nN(3e+w) and D tends to D' given by

D= -2uNQGe+w+pu). (2.6b)

From the condition for thermodynamic stability we see that the system attains the open
or close-packed state, as the temperature tends to absolute zero, at constant chemical
potential, according as u is less than or greater than uo= — 6€. Now at thermodynamic
equilibrium

D = -2nNAP 2.7)

and it follows from equations (2.6a) and (2.7) that, as the temperature tends to absolute
zero along a curve of constant chemical potential, a positive value of pressure will be
attained if and only if

w>=3(e+w)/2. (2.8)
Corresponding to the chemical potential u, we have
Dy= —2nNA Py= —-2nN(w —3e), (2.9)

where P, is the separation pressure derived by Bell and Lavis (1970a) for a system
which is in thermal and mechanical equilibrium with its environment but in chemical
isolation. It is clear that if u < u, then the limiting value for the pressure must be less
than P,. Thus, in order for the open structure to be a possible stable equilibrium state,
as the temperature tends to absolute zero, we must have

Py=(w—3€)/As>0. (2.10)
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3. The matrix method

The distribution appropriate to a system in thermal and chemical equilibrium with its

environment and in mechanical isolation is the grand canonical distribution for which
D=—kThhEu,N, T) 3.1

where E is the grand canonical partition function and k is Boltzmann’s constant. From
equations (2.7) and (3.1) the pressure P of the system is given by

(20)- () iy )

The 3" occupational states of an element of the lattice are ordered according to the
symmetry properties described in the appendixt and we construct the 3" X 3°" dimen-
sional matrix

V = (exp(%y’n _%E'n _Ené _%Ef +%ﬂ~§)/kT) (33)

With respect to the representation R of the dihedral group we have (see appendix,
equations (A.1), (A.2))

R(CY)VR(C,) =V (3.4a)

R(o;)VR(o,) =V (3.4b)
fors=1,2,...,nand

R(UZ")VR(UZ") = V*. (3.4¢)

If the first (left-hand end) element of the lattice has occupational state i we suppose
that it interacts with the boundary with energy EE,L) and if the Nth (right-hand end)
element has this occupation state we suppose that it interacts with the boundary with
energy E ﬁ,R > In terms of these energies we define the 3°"-dimensional vectors

a = (exp[—(E,” ~3p, +3E,)/kT)) (3.5a)
and

B = (exp[~GE, —3p, + EYV)/KT)). (3.5b)
We shall suppose that

R(C)a*=a* R(C.)B* =B* (3.6a)

R{o,)a* = a* R(o,)B* = B* (3.6b)
fors=1,2,...,n and

RUYa*=g*  RU)B*=a*. (3.6¢)

This is equivalent to assuming that the system has identical interactions with its two
boundaries, these interactions being invariant under any operation of the group 4,,.
It may be shown (see, e.g., Bell and Salt 1973) that

—~ N-1
E(u, N, T)=aV ~ 'B*. (3.7)
1 The appendix contains only a brief description of the dihedral group. Its multiplication table, together with

a representation R of the group for n =1 and 2, is contained in another unpublished appendix which can be
obtained by writing to the author.
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The probability p, (i) that the ith element has occupation 0 for 1<i=<N is given, in
terms of the vector i, defined in the appendix, by

(aVTiiHE, v B
B aV'ig*

and the conditional probability p,.(i, k) that the kth element has occupation £ given
that the ith element has occupation n for 1 <i<k < N is given by

6V TGV %)

i,V g* '
Itis evident from equation (3.9) that the process of occupation of successive elements of
the lattice is a Markov chain with transition probability p,.(i — 1, i) for the ith element
to have occupation £ given that the (i — 1)th element has occupation i (see, €.g., Parzen

1960, p 136).
Let the right eigen-equation for V be of the form

Ve ™% = ™y m=1,2,...,3", (3.10a)

Py () (3.8)

pﬂf(i7 k)= (39)

where we suppose that the right eigenvalues are, as far as possible, ordered according to
decreasing modulus. From equations (3.4c¢) and (3.10a)

d"™V=x,d"™ m=1,2,...,3" (3.106)
where

d"™ =e"™RUY) m=1,2,...,3" (3.11)
and

d™e* = e™R(UL e * =6, m1=1,2,...,3" (3.12)

(For degenerate eigenvalues we can choose an orthonormal basis for the subspace
defined by the eigenvalue.) All elements of the matrix V are strictly greater than zero
and it follows from Perron’s theorem (see Gantmacher 1959, p 64) that
(i) x, is real and positive;

(i) x;>|x.,m=2,3,...,3";

(iii) the vector e’ has real strictly positive elements.

Let ® be the diagonal matrix with the elements of e'” along the diagonal. We
construct the matrix

N=0"'VO/x,. (3.13)

This matrix has the eigenvalues h,, = (x,./x,) with corresponding right and left eigen-
vectors

g =e07 = ((ef"/el), ..., (€SB eSh) (3.14a)
and
g™ =d"™8=((d{"el"), ..., (dMesEr) (3.145)

respectively form=1,2,..., 3%". Since h,; =1 and g(1)=j =(1,1,1,...,1) it follows
that II is a stochastic matrix. It is not difficult to show that, for any integer r =0,

32n

=% hn@"*®q™), (3.15)



2084 D A Lavis

where I1° is taken to be the unit matrix. For small values of r this equation is of no great
importance since powers of Il can be calculated by matrix multiplication. It does
however become significant in the limit of large r where, since |h,,|<1 for m > 1, we
have

m~j*®q™". (3.16)

We shall in this work be concerned with the thermodynamic limit, N - c0. Substitut-
ing from equations (3.13)-(3.16) into (3.2) and (3.7)—(3.9) we have

(B29) ~ (D)= tn x5 ol @ 891) ~ () (52 (3.17a)
pu (i) ~ &I 1(“’::)“ ) (‘:f?)*)n‘*lfﬁ (3.17b)
and
P, k)~ 0, T3 = T15; 7, (3.17¢)

where I137 is the n—¢ element of IT".

We see that in the thermodynamic limit the Markov chain of occupational prob-
abilities is homogeneous with transition matrix II. The initial probability vector p(1) is
given by

p(1)=a®/ae* (3.18)
and the probability vector for the rth element is

p(N=pLIT""". (3.19)
From equations (3.16) and (3.19)

lim p(r)=p(1)(j*®q") = q. (3.20)

r—»oo

The vector q(l) is the stationary probability vector for the Markov chain.

4. Bulk properties

The bulk number density p = (M/2nN) of molecules on the lattice can, in the ther-
modynamic limit, be calculated by using either one of the two equivalent equations

p=(§71):)r (4.1a)

and
1
p=_2_y_< >q<,;>, (4.15)

where u' = (u/w) is the reduced chemical potential, the reduced pressure P’ = (PA,/w)
is given by equation (3.17a) and the elements of the stationary probability vector ¢
are given by equation (3.145).
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Since the largest eigenvalue x, of the matrix V is non-degenerate (see § 3) the system
will undergo no phase transitions (see, e.g., Domb 1960, § 3.2.3). It can however be
shown (Ree and Chesnut 1966, § I1.D) that, if there exists a function f of ' such that

lim [hy(n)]" = f(u') # 0, (4.2)
n—»o0
then there will, in this limit, be a non-zero correlation between the occupations of
widely separated elements of the lattice. Unlike Ree and Chesnut (1966), who, for a
system of hard squares, have obtained numerical results for a lattice of up to eighteen
rows, we are unable to obtain any reliable idea of whether such a function f exists. This
is due to the complexity of our model for which the matrix V grows in dimension with
respect to n according to 3°”. We have found it necessary in our numerical calculations
to restrict ourselves to the two cases n = 1 and n = 2. It is however of some interest to
calculate |h,(n)|" for these two cases as a function of the reduced chemical potential
along isotherms.
The reduced isothermal compressibility x 7= (krw/A,) of the system is given by

1/9
K’T:"i(—p,) , (4.3)
p-\ou/r

We are considering a system with independent variables u' = (u/w) and T = (kT/w).
For the two-dimensionally infinite system, corresponding to the limit of large n, we
could locate the phase transition curve in the (u’, T') plane by determining the
singularities of k7. Intuitively it seems reasonable to identify a maximum in Ky for
finite n, with the presence of a phase transition in the two-dimensionally infinite system,
provided that the maximum becomes increasingly steep as n is increased. There are
however a number of reasons for caution when locating such ‘incipient’ phase transi-
tions:

(i) Since the singularities in %, for the infinite system, arise from singularities in
(3p/du")1, any function of the form

glisj ks, T)=p"T'p" (u', Tk ', T, (4.4)
for positive integers i, j and k, would exhibit precisely the same singularities as « . For
finite n however the maxima in the different g’s would be located at different points in
the (u', T') plane.

(if) Given particular values of i, j and k for equation (4.4), it is not necessarily the
case that maxima in g as a function of u’ along a curve of constant 7" will coincide with
those of g as a function of T" along a curve of constant &'. For the infinite system, the
corresponding singularities would coincide.

(iii) The high-density behaviour of a system with » infinite is not immediately
obtainable from a system with » finite. This point is well illustrated by Bellemans and
Nigam (1967) who obtain series expansions for their model from the matrix method and
from high-density series. For the pressure these expansions differ in all but the leading
term indicating the possibility of maxima in the compressibility which derive entirely
from the matrix method and which do not relate to the presence of incipient phase
transitions.

As n becomes large we should expect the weight of these objections to decrease, in
the sense that all the maxima discussed in (i) and (ii) would tend to coalesce and those of
(iil) would tend to disappear. If, as in our case, investigations are possible only for small
n, then only general qualitative predictions of the phase transitions can be given. To
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distinguish between genuine incipient phase transitions and spurious maxima and to
predict the order of phase transitions we must rely on the results of approximation
methods. Ree and Chesnut (1966), Bellemans and Nigam (1967), Orban and Belle-
mans (1968), Orban et al (1968), Runnels and Combs (1966) and Runnels et al (1967)
chose to locate phase transitions by plotting a function of the form (4.4), withi =0,/ =1
and k =2, against u'/T'. Comparisons by Bellemans and Nigam (1967) with series and
closed-form approximations yielded good qualitative agreement. We have chosen to
plot a function of the form (4.4), with i =j=0and k = 2, against »". For plots along an
isotherm this is of course equivalent to the choice of the above mentioned authors.

5. Boundary properties

The effect of a boundary on the structure of the assembly can be measured in a large
number of different ways. One of the most concise parameters is that of Bell and Salt
(1973) who calculated the difference, in the thermodynamic limit, between the number
of pairs of elements with particular occupations on an open chain of N elements and on
a chain for which the first and (N +1)th elements coincide. The difficulty of this
parameter for us is that it involves calculation of all the eigenvectors of V. This, at least
for n =2, where V is 81 X 81, would need a considerable expenditure of computer time.
We have chosen rather to use parameters which can be represented entirely in terms of
the elements of the probability vector p(r).
In terms of the 2n-dimensional occupation vector = (Sap, S21-1, - - - , §1) We define
the function
1 ifs,=s
A(n;s,j)={ _ (5.1
0 otherwise.

The probability p,(r) that the rth site in the first row of the lattice is occupied by a
monomeric molecule is given by

Pa(1) =Y p,(DA(m; — 1, 1)(1-A(n; +1,2))(1-A(n; +1,2n))

+ Z{Pn(l)A(n; +1, Dp, 2Q)(1-A; —1, 1)), (5.2a)
forr=1 and

Pu(r) =§Z pr—1D(1-A; +1, 1))p,(NAn; —1, D(1-An; +1,2)

X(1-A(n; +1, 2n))+£Z£P§(r— D(1-A; —1,2)(1-A&; —1,2n))
Xpa(nA(m; +1, Dp,(r+1)(1-AK; -1, 1)) (5.2b)

for r > 1. The local number density p; (r) on the rth element of the lattice is given by

1 2n
pL(r) =5;§pn (r) j; I (5.3)
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forr=1 and
lim py (r)=pL(0) =p (5.4)

where p is the bulk number density given by equations (4.1).
We use the parameters p,(r) and py (r) to measure the effects of the boundary on the
structure of the assembly.

6. Results and discussion

In all our calculations we choose the energy ratio (e/w) = 0-25, this being the value for
which the properties of the model, as investigated by the first-order approximation of
Lavis (1973) are most water-like. In order to obtain numerical results for this problem
we need to solve the eigen-problem for the matrix V. For the two cases considered,
n =1 and n =2, we make full use of the symmetry properties of the matrix which are
represented by equations (3.4). These properties allow a considerable simplification of
the computational workt.

The pressure in the system is given, as a function of reduced temperature and
chemical potential, by equation (3.17a) and we obtain the bulk number density p by
five-point numerical differentiation according to equation (4.1a). As a check on
numerical accuracy we also obtained the number density from the principal eigenvector
using equations (3.145) and (4.1b). These results gave seven-figure agreement in every
case. This also gives an indication of the accuracy of the numerical differentiation
involved in the determination of p*« raccording to equation (4.3). The functions P’, p,
p’k'rand |h,|" are plotted in figures 2 and 3, for n = 1 and n = 2 respectively, against the
reduced chemical potential u' along the isotherm 7"=0-15. These are just two of a
whole set of graphs which were drawn for varying values of the temperature. From these
graphs the isobars given in figure 4 were constructed. It would of course have been
possible to obtain these isobars by direct numerical calculation. This would have
involved the use of a root-finding subroutine to determine the value of u’ corresponding
to a particular value of x; and of 7". Such calculations would have consumed large
amounts of computing time, yielding in return a degree of accuracy which could not
have been represented in the final graphs. The isobars in figure 4, like those of Bell and
Salt (1973) exhibit the characteristic water-like density maximum below the reduced
separation pressure Po=0-25. They also show, although of course not exhibiting a
phase transition, a resemblance to the isobars of Lavis (1973). As in the work of Bell
and Lavis (1970b), this density maximum has been achieved entirely by the effect of
molecular bonding on the short-range ordering on the lattice. We may tentatively infer
that this kind of mechanism is responsible for the parallel behaviour in liquid water.

In figure 5 we have plotted the maxima of p°k ’, as a function of u' along isotherms,
in the (P', T') plane. A trajectory of maxima, for both n = 1 and n = 2, leaves the point
P'=0, T" =0 and follows fairly closely the corresponding phase transition curve of the
first-order approximation of Lavis (1973). These maxima are, for low temperatures,
extremely steep (see figures 2 and 3) and for all temperatures they are steeper for n =2
than for n = 1. It is not unreasonable to suppose that they correspond to a genuine
incipient phase transition which in the limit as n tends to infinity would give the
first-order phase transition to or from the low-density gaseous state. Support for this

t The details of our method are contained in an unpublished appendix.
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Figure 2. Curves of P', p, p’«'rand |, plotted against .’ along the isotherm T = 0-15 for
n =1, The scale of the vertical axis changes at the value 1-0.
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Figure3. Curves of P', p, p*x'rand [h,|° plotted against u' along the isotherm T" = 0-15 for
n =2. The scale of the vertical axis changes at the value 1-0 and the horizontal axis at
—1-88.
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Figure 4. Isobars for n =1 (chain curves) and n =2 (full curves) plotted in the density-
temperature plane. The curves are labelled with their values of P'.
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Figure 5. Trajectories of the maxima of p*k’rand |h,|". For n = 1 the maxima of p*k/rare
denoted by X and the maxima of [k,] by O. For n =2 the maxima of p«/rare denoted by +
and the maxima of |h,|° by (). The chain curve represents the phase transition curve of Lavis
(1973). The scale of the vertical axis changes at 0-05.



2090 D A Lavis

conjecture is given by figure 4, where we see that, for low pressures, the isobaric
coefficient of thermal expansion —p~'(9p/aT)p attains larger values for » = 2 than for
n = 1in the same temperature range. For 7" less than about 0-275 for n =2 and 0-175
for n =1 there is a second maximum in p’k’. The trajectory of these maxima, as T’
increases from zero, leaves the point P’ = Pg as does the corresponding phase transition
curve for the first-order approximation. Since the pressure Py is the pressure which
separates the stable equilibrium ranges of the close-packed and honeycomb arrange-
ments of molecules at zero temperature (see § 2) it is strongly suggested that this curve
corresponds to the first-order transition to or from the solid phase. Although the
maximum in this case is much shallower than that which occurs at the lower pressure, it
does become steeper for increasing n (cf figures 2 and 3). It is unfortunate that this
second maximum disappears before it can coalesce with the lower pressure maximum in
a triple point, but it is reasonable to suppose that, if n could be extended to higher
values, a triple point could be obtained.

In figure 5 we have also represented the trajectories of the maximum of |h,|" for
n =1 and n =2. This maximum approaches very closely its degeneracy value of unity
and the trajectories follow those of p’k’r up to high temperatures where a slight
divergence is detected. Around these temperatures a second maximum for n =1 and
n =2 appears. Since this is extremely shallow it is probably of no physical significance.
Of more significance, in view of the discussion in § 4, is the result that |h,|" drops in
value quite steeply for values of u’ below the lower maximum of p°k’ and, as u’
increases, it again appears to tend to zero (see figures 2 and 3). Since the range of u’
between the two maxima of p’«’% will, in the two-dimensionally infinite system,
correspond to the long-range ordered solid phase, it must be in this range that a function
f(u") #0, and given by (4.2), will exist.

In dealing with the boundary properties of the system we choose two types of
interaction between the first element of the lattice and the boundary:

(a) The fully-bonded boundary, where E ﬁ,"’ =0 if n is the occupational state
representing a bonded ring of sites and E‘“ = oo otherwise.
(b) The indifferent boundary, where Ef,,L) =0 for all occupational states 7.

Since the successive occupations of elements of the lattice are, in the thermodynamic
limit, given by a homogeneous Markov chain the boundary can produce no long-range
disturbance in the assembly. The effects of the boundary must decay as penetration
into the bulk of the lattice deepens. The purpose of our calculations is to discover the
way in which this decay occurs and the effect upon it of different types of boundary and
different values of the temperature and chemical potential. Computations were
performed for two values, T'=0-15 and 0-6, of the temperature and two values,
u'=-1-8 and —1-4, of the chemical potential. In figure 6, p,(r) and p.(r) are shown
for n=2, T'=0-15 and u'= —1-8 with a fully-bonded boundary. Of the cases
considered this is the one for which boundary effects are most marked. This is to be
expected since, at low temperatures, short-range ordering, in terms of bonded clusters
of molecules, will be most evident and the chemical potential u’ = —1-8 fall in the range
between the two maxima of the compressibility (see figure 3) and will therefore
correspond most nearly to the occurrence of a solid phase.

The most interesting feature of figure 6 is the three-element damped periodicity of
the chains. This again is easily understood since the honeycomb bonded molecular
structure has a periodicity of three with respect to the elements of the lattice (see figure
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Figure 6. Values of p,(r) and p. (r) for a fully-bonded boundary with n = 2. The value of
the reduced temperature is 0-15 and of the reduced chemical potential is —1-8.

1). Since no long-range ordering occurs in the assembly, the bulk values p,(c0) and
pL(%0) = p of the monomer probability and the local density can be viewed as averages
over the period of the short-range ordering. The effect of a fully-bonded boundary is to
impose a particular phase on the periodicity of the Markov chain. The decay in
amplitude of the variations in p,(r) and p, (r) as we proceed along the chain can be
understood as a process of phase-mixing which ultimately produces the average values
associated with the bulk of the assembly. It is interesting to note that the quantity
pL(r)/p (obtained from figure 6 by scaling the vertical axis) has a behaviour very similar
to that of the radial distribution function for liquid water (see Eisenberg and Kauzmann
1969, p 157). Since the local density is calculated over an element of the lattice and
measured in one dimension, there can of course be no exact identification of these two
quantities. It can nevertheless be argued that p;(r)/p is the quantity most nearly
equivalent to the radial distribution function for our model. The fact that we are
measuring from a boundary is not important here. If we were to close the lattice by
bringing the first and (N + 1)th elements together on the surface of a torus of infinite
radius, then a fully-bonded ring of molecules on the first (or any other) element would
have exactly the effect in both directions along the torus as does our boundary element.
While, as we have indicated, the depth of penetration of boundary effects is greater
for the lower of our two chosen temperatures, the distinction between choosing the
fully-bonded or indifferent boundary shows up most clearly for the higher temperature.
Since the effect of the indifferent boundary is exactly that which would be produced if a
completely vacant lattice element were situated to the left of the first element, it is not
surprising that there is a strong tendency for the first element to be fully-bonded. This
tendency is reduced by thermal agitation as the temperature is increased thereby
producing a clearer differentiation between the indifferent and fully-bonded boundary.
Because of the averaging represented by p,,(%0) and p, (0) it is, in some ways, more
reasonable to investigate boundary effects by comparing these quantities with similar
averages taken over elements of the lattice near to the boundary. We define the relative
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Figure 7. Values of j,,(r) for T'=0-6. Full curves Figure 8. Values of g, (r) for T'=0-6. Full curves
represent the fully-bonded boundary and chain represent the fully-bonded boundary and chain
curves the indifferent boundary with: A, u'= —1-8,  curves the indifferent boundary with: (A) x'=—1-8,
n=1;B,u'=-14,n=1Cu'=-18n=2;D, n=1,B)u'=-14n=1(Qu' =~1-8,n=2;(D)
u'=—14n=2 p'=—14,n=2.
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period averages of py(r) and p; (r) by

Pm(3r—2)+pe(3r—1)+pn(3r)
3pm()

m( )_ (61a)

and

pL(3r=2)+p L (3r—1)+p.(3r)
3py(0)

pL(r)= (6.1b)

respectively, where

lim p,(r)=1-0 and lim g (r)=1-0.

We investigated the lattice to the depth of fifty-three elements. By this stage, in all cases
except T'=0-15, u'=—1-8, n =2, the parameters had to the fourth decimal place
attained their limiting values. Even in this one case the limiting values had been
attained to the second decimal place. The difference in behaviour associated with the
two choices of boundary disappeared very close to the boundary and, in the case of the
lower temperature, before the effect of the disturbance itself disappeared. In all cases
the disturbance penetrated to a greater depth for n =2 than for n =1. This is to be
expected because of the greater structure-creating possibilities afforded by the larger
value of n. In figures 7 and 8 our results are displayed for the temperature 7" = 0-6. The
general conclusion to be drawn from our work is that the model is in agreement with the
experimental work of Clifford et al (1970) and the theoretical studies of Bell and Salt
(1973) in showing that boundary effects cause only a short-range disturbance on the
structure of the system.

In the absence of an exact solution to the two-dimensionally infinite system, the best
we are able to do is to approach the problem, either by an approximation method, as in
the investigation of bulk properties by Lavis (1973), or by solving exactly for a lattice
with a finite number of rows, as in the present work. Any predictions about the
properties of the two-dimensionally infinite system made on this basis are necessarily
speculative.

Appendix: Symmetry properties

The symmetry of an element of the lattice is represented by the dihedral group 9,4.
This group consists of:

(i) The n rotations {I, CS", ..., C" ™}, where C$’ is a rotation through an angle of
2rs/n radians about the axis of the cylinder and I=C{" is the identity element.

(ii) The n reflections {oy,...,o,}, where o, is a reflection through the plane
containing the axis of the cylmder and the row w1th index s.

(iii) The n rotations {U3" U}, where UY is a rotation through an angle of 7
radians about the axis Wthh passes through the points P, and P, ..

(iv) The n improper rotations {Ss,, S5y, ..., Sor” 1)} where SV is a rotation
through an angle of (2s — 1)#r/n radians about the ax1s of the cylinder together with a
reflection through the plane containing the points Py, P,, ..., Py,.

The multiplication table for this group is given in an unpublished appendix.

The rotational subgroup %, of 9,4 contains the rotations {I, C{", . . ., C% Mandthe

subgroup ¥€,,, contains these rotations and the reflections {74, . .., 0,,}.
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The importance of these group operations for our model becomes clear if we make
the following observations.

(a) An occupational state 0 of an element of the lattice will, under any operation of
9.4, map into another occupational state ' with

E,=E, (A.1a)
Moy = fhoy. (A.1b)

(b) For two neighbouring occupational states n and £ which map into neighbouring
occupational states ' and £

E.,,g = Ly (A.2a)
if the operator is a member of €, and
E,;=E;, (A.2b)

if the operator is one of the rotations {U}", ..., U,

We order the occupational states according to their symmetry properties, collecting
together all occupations which permute among themselves under the operations of &,,4,
and within these sets we form subsets which permute under the operations of €, and
%,. If the occupational state represented by the 2n-dimensional vector 5 appears as the
rthstate in this ordering we now represent it alternatively by the 3°” -dimensional vector
f,, which has zeros in all entries except the rth which is unity. The elements of @,4
have a 3*"-dimensional representation R which represents the operations of &,,4 on the
occupational states of the system. The ordering of occupational states and the corres-
ponding representations for n =1 and n = 2 are given in an unpublished appendix.
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